Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22326, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102161

RESUMO

Isozymes are enzymes that catalyze identical biological reactions, yet exhibit slight variations in structures and catalytic efficiency, which enables the precise adjustment of metabolism to fulfill the specific requirements of a particular tissue or stage of development. Methionine aminopeptidase (MetAP) isozymes function a critical role in cleaving N-terminal methionine from nascent proteins to generate functional proteins. In humans, two distinct MetAP types I and II have been identified, with type I further categorized into cytosolic (MetAP1) and mitochondrial (MetAP1D) variants. However, despite extensive structural studies on both bacterial and human cytosolic MetAPs, the structural information remains unavailable for human mitochondrial MetAP. This study was aimed to elucidate the high-resolution structures of human mitochondrial MetAP1D in its apo-, cobalt-, and methionine-bound states. Through a comprehensive analysis of the determined structures and a docking simulation model with mitochondrial substrate peptides, we present mechanistic insights into the cleavage process of the initiator methionine from mitochondrial proteins. Notably, despite the shared features at the active site between the cytosolic and mitochondrial MetAP type I isozymes, we identified distinct structural disparities within the active-site pocket primarily contributed by two specific loops that could play a role in accommodating specific substrates. These structural insights offer a basis for the further exploration of MetAP isozymes as critical players in cellular processes and potential therapeutic applications.


Assuntos
Aminopeptidases , Metionina , Humanos , Aminopeptidases/metabolismo , Isoenzimas , Metionina/metabolismo , Metionil Aminopeptidases/metabolismo , Racemetionina
2.
Nature ; 609(7926): 416-423, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35830882

RESUMO

RAS-MAPK signalling is fundamental for cell proliferation and is altered in most human cancers1-3. However, our mechanistic understanding of how RAS signals through RAF is still incomplete. Although studies revealed snapshots for autoinhibited and active RAF-MEK1-14-3-3 complexes4, the intermediate steps that lead to RAF activation remain unclear. The MRAS-SHOC2-PP1C holophosphatase dephosphorylates RAF at serine 259, resulting in the partial displacement of 14-3-3 and RAF-RAS association3,5,6. MRAS, SHOC2 and PP1C are mutated in rasopathies-developmental syndromes caused by aberrant MAPK pathway activation6-14-and SHOC2 itself has emerged as potential target in receptor tyrosine kinase (RTK)-RAS-driven tumours15-18. Despite its importance, structural understanding of the SHOC2 holophosphatase is lacking. Here we determine, using X-ray crystallography, the structure of the MRAS-SHOC2-PP1C complex. SHOC2 bridges PP1C and MRAS through its concave surface and enables reciprocal interactions between all three subunits. Biophysical characterization indicates a cooperative assembly driven by the MRAS GTP-bound active state, an observation that is extendible to other RAS isoforms. Our findings support the concept of a RAS-driven and multi-molecular model for RAF activation in which individual RAS-GTP molecules recruit RAF-14-3-3 and SHOC2-PP1C to produce downstream pathway activation. Importantly, we find that rasopathy and cancer mutations reside at protein-protein interfaces within the holophosphatase, resulting in enhanced affinities and function. Collectively, our findings shed light on a fundamental mechanism of RAS biology and on mechanisms of clinically observed enhanced RAS-MAPK signalling, therefore providing the structural basis for therapeutic interventions.


Assuntos
Cristalografia por Raios X , Peptídeos e Proteínas de Sinalização Intracelular , Complexos Multiproteicos , Proteína Fosfatase 1 , Proteínas ras , Proteínas 14-3-3 , Guanosina Trifosfato/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Sistema de Sinalização das MAP Quinases , Complexos Multiproteicos/química , Mutação , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Proteína Fosfatase 1/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Quinases raf , Proteínas ras/química , Proteínas ras/metabolismo
3.
Comput Struct Biotechnol J ; 20: 745-756, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35140891

RESUMO

Bcl-2 family kin (Bfk), also known as Bcl-2-like 15, plays an essential role in regulating apoptosis by eliciting weak pro-apoptotic responses in the gastrointestinal tract. Human Bfk is a novel Bcl-2 family protein owing to its unique domain composition involving BH2 and BH3. However, the molecular mechanism underlying the regulation of apoptosis by Bfk remains unclear. Here, we first report the crystal structure of human full-length Bfk. Surprisingly, the structure of Bfk adopts a canonical Bcl-2 fold but lacks the hydrophobic cleft, which could accommodate a BH3 domain from other Bcl-2 family proteins. Our biophysical interaction analysis proved that the full-length Bfk itself does not interact with multi-domain Bcl-2 family proteins or a BH3-containing peptide. Instead, Bfk is structurally and functionally reminiscent of Bid, a BH3-only protein in the Bcl-2 family, with similar conformations of helices α3-α5 and the specific motif in helix α5. Not only structural analyses of the full-length Bfk but also molecular dynamics simulation suggested that Bfk elicits its pro-apoptotic activity through a Bid-like apoptotic mechanism in which the BH3 domain is released upon caspase-mediated cleavage and a conformational change of the truncated form. Indeed, the BH3 peptide derived from Bfk exhibited in vitro interactions with Bcl-2, Bcl-XL, and Bak. These findings provide new insights into the molecular characteristics of Bfk and a valuable foundation for development of a new therapeutic target to control apoptosis.

4.
Nucleic Acids Res ; 50(4): 2319-2333, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35141752

RESUMO

Staphylococcus aureus is a notorious and globally distributed pathogenic bacterium. New strategies to develop novel antibiotics based on intrinsic bacterial toxin-antitoxin (TA) systems have been recently reported. Because TA systems are present only in bacteria and not in humans, these distinctive systems are attractive targets for developing antibiotics with new modes of action. S. aureus PemIK is a type II TA system, comprising the toxin protein PemK and the labile antitoxin protein PemI. Here, we determined the crystal structures of both PemK and the PemIK complex, in which PemK is neutralized by PemI. Our biochemical approaches, including fluorescence quenching and polarization assays, identified Glu20, Arg25, Thr48, Thr49, and Arg84 of PemK as being important for RNase function. Our study indicates that the active site and RNA-binding residues of PemK are covered by PemI, leading to unique conformational changes in PemK accompanied by repositioning of the loop between ß1 and ß2. These changes can interfere with RNA binding by PemK. Overall, PemK adopts particular open and closed forms for precise neutralization by PemI. This structural and functional information on PemIK will contribute to the discovery and development of novel antibiotics in the form of peptides or small molecules inhibiting direct binding between PemI and PemK.


Assuntos
Antitoxinas , Staphylococcus aureus , Antibacterianos/metabolismo , Antitoxinas/genética , Antitoxinas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , RNA/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
5.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445192

RESUMO

Given the functional attributes of Doublecortin-like kinase 1 (DCLK1) in tumor growth, invasion, metastasis, cell motility, and tumor stemness, it is emerging as a therapeutic target in gastrointestinal cancers. Although a series of specific or nonspecific ATP-competitive inhibitors were identified against DCLK1, different types of scaffolds that can be utilized for the development of highly selective inhibitors or structural understanding of binding specificities of the compounds remain limited. Here, we present our work to repurpose a Janus kinase 1 inhibitor, ruxolitinib as a DCLK1 inhibitor, showing micromolar binding affinity and inhibitory activity. Furthermore, to gain an insight into its interaction mode with DCLK1, a crystal structure of the ruxolitinib-complexed DCLK1 has been determined and analyzed. Ruxolitinib as a nonspecific DCLK1 inhibitor characterized in this work is anticipated to provide a starting point for the structure-guided discovery of selective DCLK1 inhibitors.


Assuntos
Antineoplásicos/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Antineoplásicos/química , Quinases Semelhantes a Duplacortina , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Simulação de Acoplamento Molecular , Nitrilas , Conformação Proteica/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Pirazóis/química , Pirimidinas
6.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266062

RESUMO

Peroxisome proliferator-activated receptor gamma (PPARγ) has recently been revealed to regulate tumor microenvironments. In particular, genetic alterations of PPARγ found in various cancers have been reported to play important roles in tumorigenesis by affecting PPARγ transactivation. In this study, we found that helix H3 of the PPARγ ligand-binding domain (LBD) has a number of sites that are mutated in cancers. To uncover underlying molecular mechanisms between helix H3 mutations and tumorigenesis, we performed structure‒function studies on the PPARγ LBDs containing helix H3 mutations found in cancers. Interestingly, PPARγ Q286E found in bladder cancer induces a constitutively active conformation of PPARγ LBD and thus abnormal activation of PPARγ/RXRα pathway, which suggests tumorigenic roles of PPARγ in bladder cancer. In contrast, other helix H3 mutations found in various cancers impair ligand binding essential for transcriptional activity of PPARγ. These data indicate that cancer-associated mutations clustered in helix H3 of PPARγ LBD exhibit differential effects in PPARγ-mediated tumorigenesis and provide a basis for the development of new biomarkers targeting tumor microenvironments.

7.
Int J Mol Sci ; 21(21)2020 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-33142954

RESUMO

MINERVA (melanoma invasion by ERK), also known as FAM129B, is a member of the FAM129 protein family, which is only present in vertebrates. MINERVA is involved in key signaling pathways regulating cell survival, proliferation and apoptosis and found upregulated in many types of cancer promoting invasion. However, the exact function of the protein remains elusive. X-ray crystallographic methods were implemented to determine the crystal structure of MINERVAΔC, lacking C-terminal flexible region. Trypsin digestion was required before crystallization to obtain diffraction-quality crystals. While the N-terminal pleckstrin homology (PH) domain exhibits the typical fold of PH domains, lipid binding assay indicates specific affinity towards phosphatidic acid and inositol 3-phosphate. A helix-rich domain that constitutes the rest of the molecule demonstrates a novel L-shaped fold that encompasses the PH domain. The overall structure of MINERVAΔC with binding assays and cell-based experiments suggest plasma membrane association of MINERVA and its function seem to be tightly regulated by various motifs within the C-terminal flexible region. Elucidation of MINERVAΔC structure presents a novel fold for an α-helix bundle domain that would provide a binding platform for interacting partners.


Assuntos
Membrana Celular/metabolismo , Cristalografia por Raios X/métodos , Melanoma/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Humanos , Melanoma/patologia , Modelos Moleculares , Fosfoproteínas/isolamento & purificação , Ligação Proteica , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Transdução de Sinais
8.
PLoS One ; 15(7): e0236197, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32701958

RESUMO

Genome-wide association studies of gastric cancer (GC) cases have revealed common gastric cancer susceptibility loci with low effect size. We investigated rare variants with high effect size via whole-exome sequencing (WES) of subjects with familial clustering of gastric cancer. WES of DNAs from the blood of 19 gastric cancer patients and 36 unaffected family members from 14 families with two or more gastric cancer patients were tested. Linkage analysis combined with association tests were performed using Pedigree Variant Annotation, Analysis, and Search Tool (pVAAST) software. Based on the logarithm of odds (LOD) and permutation-based composite likelihood ratio test (CLRT) from pVAAST, MUC4 was identified as a predisposing gene (LOD P-value = 1.9×10-5; permutation-based P-value of CLRT ≤ 9.9×10-9). In a larger cohort consisting of 597 GC patients and 9,759 healthy controls genotyped with SNP array, we discovered common variants in MUC4 regions (rs148735556, rs11717039, and rs547775645) significantly associated with GC supporting the association of MUC4 with gastric cancer. And the MUC4 variants were found in higher frequency in The Cancer Genome Atlas Study (TCGA) germline samples of patients with multiple cancer types. Immunohistochemistry indicated that MUC4 was downregulated in the noncancerous gastric mucosa of subjects with MUC4 germline missense variants, suggesting that loss of the protective function of MUC4 predisposes an individual to gastric cancer. Rare variants in MUC4 can be novel gastric cancer susceptibility loci in Koreans possessing the familial clustering of gastric cancer.


Assuntos
Sequenciamento do Exoma , Ligação Genética , Predisposição Genética para Doença , Variação Genética , Mucina-4/genética , Estudos de Coortes , Família , Feminino , Células Germinativas/metabolismo , Humanos , Masculino , Pessoa de Meia-Idade , Mucina-4/química , Linhagem , Reprodutibilidade dos Testes , Estômago/patologia , Neoplasias Gástricas/genética
9.
Biomolecules ; 10(2)2020 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-32054125

RESUMO

Adiponectin is an adipocyte-derived cytokine having an insulin-sensitizing activity. During the phenotypic screening of secondary metabolites derived from the marine fungus Aspergillusterreus, a poly cyclin-dependent kinase (CDK) inhibitor butyrolactone I affecting CDK1 and CDK5 was discovered as a potent adiponectin production-enhancing compound in the adipogenesis model of human bone marrow-derived mesenchymal stem cells (hBM-MSCs). CDK5 inhibitors exhibit insulin-sensitizing activities by suppressing the phosphorylation of peroxisome proliferator-activated receptor γ (PPARγ). However, the adiponectin production-enhancing activities of butyrolactone I have not been correlated with the potency of CDK5 inhibitor activities. In a target identification study, butyrolactone I was found to directly bind to PPARγ. In the crystal structure of the human PPARγ, the ligand-binding domain (LBD) in complex with butyrolactone I interacted with the amino acid residues located in the hydrophobic binding pockets of the PPARγ LBD, which is a typical binding mode of the PPARγ partial agonists. Therefore, the adiponectin production-enhancing effect of butyrolactone I was mediated by its polypharmacological dual modulator activities as both a CDK5 inhibitor and a PPARγ partial agonist.


Assuntos
4-Butirolactona/análogos & derivados , Quinase 5 Dependente de Ciclina/antagonistas & inibidores , PPAR gama/agonistas , Inibidores de Proteínas Quinases/farmacologia , 4-Butirolactona/química , 4-Butirolactona/farmacologia , Adipogenia/efeitos dos fármacos , Adiponectina/biossíntese , Sítios de Ligação/fisiologia , Células da Medula Óssea , Células Cultivadas , Cristalografia por Raios X , Quinase 5 Dependente de Ciclina/química , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , PPAR gama/química , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Estrutura Terciária de Proteína
10.
Biomolecules ; 10(1)2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31968674

RESUMO

The N-degron pathway is a proteolytic system in which a single N-terminal amino acid acts as a determinant of protein degradation. Especially, degradation signaling of N-terminal asparagine (Nt-Asn) in eukaryotes is initiated from its deamidation by N-terminal asparagine amidohydrolase 1 (NTAN1) into aspartate. Here, we have elucidated structural principles of deamidation by human NTAN1. NTAN1 adopts the characteristic scaffold of CNF1/YfiH-like cysteine hydrolases that features an α-ß-ß sandwich structure and a catalytic triad comprising Cys, His, and Ser. In vitro deamidation assays using model peptide substrates with varying lengths and sequences showed that NTAN1 prefers hydrophobic residues at the second-position. The structures of NTAN1-peptide complexes further revealed that the recognition of Nt-Asn is sufficiently organized to produce high specificity, and the side chain of the second-position residue is accommodated in a hydrophobic pocket adjacent to the active site of NTAN1. Collectively, our structural and biochemical analyses of the substrate specificity of NTAN1 contribute to understanding the structural basis of all three amidases in the eukaryotic N-degron pathway.


Assuntos
Amidoidrolases/metabolismo , Asparagina/metabolismo , Peptídeos/metabolismo , Proteólise , Amidoidrolases/química , Asparagina/análise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Peptídeos/química , Especificidade por Substrato
11.
Nucleic Acids Res ; 46(18): 9805-9815, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30102386

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPRs) and CRISPR-associated (Cas) proteins provide microbial adaptive immunity against invading foreign nucleic acids. In type II-A CRISPR-Cas systems, the Cas1-Cas2 integrase complex and the subtype-specific Csn2 comprise the CRISPR adaptation module, which cooperates with the Cas9 nuclease effector for spacer selection. Here, we report the molecular organization of the Streptococcus pyogenes type II-A CRISPR adaptation module and its interaction with Cas9 via Csn2. We determined the crystal structure of S. pyogenes type II-A Cas2. Chromatographic and calorimetric analyses revealed the stoichiometry and topology of the type II-A adaptation module composed of Cas1, Cas2 and Csn2. We also demonstrated that Cas9 interacts with Csn2 in a direct and stoichiometric manner. Our results reveal a network of molecular interactions among type II-A Cas proteins and highlight the role of Csn2 in coordinating Cas components involved in the adaptation and interference stages of CRISPR-mediated immunity.


Assuntos
Imunidade Adaptativa/genética , Proteínas Associadas a CRISPR/química , Sistemas CRISPR-Cas/genética , Integrases/química , Adaptação Fisiológica/genética , Proteínas Associadas a CRISPR/genética , Cristalografia por Raios X , Integrases/genética , Ácidos Nucleicos/química , Ácidos Nucleicos/genética , Ácidos Nucleicos/imunologia , Streptococcus pyogenes/enzimologia , Streptococcus pyogenes/genética
12.
Int J Biol Macromol ; 119: 335-344, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30016658

RESUMO

Vancomycin resistance in Enterococci and its transfer to methicillin-resistant Staphylococcus aureus are challenging problems in health care institutions worldwide. High-level vancomycin resistance is conferred by acquiring either transposable elements of the VanA or VanB type. Enterococcus faecalis VanYB in the VanB-type operon is a d,d-carboxypeptidase that recognizes the peptidyl-d-Ala4-d-Ala5 extremity of peptidoglycan and hydrolyses the terminal d-Ala on the extracellular side of the cell wall, thereby increasing the level of glycopeptide antibiotics resistance. However, at the molecular level, it remains unclear how VanYB manipulates peptidoglycan peptides for vancomycin resistance. In this study, we have determined the crystal structures of E. faecalis VanYB in the d-Ala-d-Ala-bound, d-Ala-bound, and -unbound states. The interactions between VanYB and d-Ala-d-Ala observed in the crystal provide the molecular basis for the recognition of peptidoglycan substrates by VanYB. Moreover, comparisons with the related VanX and VanXY enzymes reveal distinct structural features of E. faecalis VanYB around the active-site cleft, thus shedding light on its unique substrate specificity. Our results could serve as the foundation for unravelling the molecular mechanism of vancomycin resistance and for developing novel antibiotics against the vancomycin-resistant Enterococcus species.


Assuntos
Enterococcus faecalis/química , Oligopeptídeos/química , Peptidoglicano/química , Sequência de Aminoácidos , Domínio Catalítico , Enterococcus faecalis/enzimologia , Ligantes , Modelos Moleculares , Estrutura Molecular , Peptídeo Hidrolases/química , Peptídeo Hidrolases/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Zinco/química
13.
Cancer Lett ; 416: 109-123, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29246646

RESUMO

Stemphol (STP) is a novel druggable phytotoxin triggering mixed apoptotic and non-apoptotic necrotic-like cell death in human acute myeloid leukemia (AML). Use of several chemical inhibitors highlighted that STP-induced non-canonical programmed cell death was Ca2+-dependent but independent of caspases, poly (ADP-ribose) polymerase-1, cathepsin, or calpains. Similar to thapsigargin, STP led to increased cytosolic Ca2+ levels and computational docking confirmed binding of STP within the thapsigargin binding pocket of the sarco/endoplasmic reticulum (ER) Ca2+-ATPase (SERCA). Moreover, the inositol 1,4,5-trisphosphate receptor is implicated in STP-modulated cytosolic Ca2+ accumulation leading to ER stress and mitochondrial swelling associated with collapsed cristae as observed by electron microscopy. Confocal fluorescent microscopy allowed identifying mitochondrial Ca2+ overload as initiator of STP-induced cell death insensitive to necrostatin-1 or cycloheximide. Finally, we observed that STP-induced necrosis is dependent of mitochondrial permeability transition pore (mPTP) opening. Importantly, the translational immunogenic potential of STP was validated by HMGB1 release of STP-treated AML patient cells. STP reduced colony and in vivo tumor forming potential and impaired the development of AML patient-derived xenografts in zebrafish.


Assuntos
Apoptose/efeitos dos fármacos , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Resorcinóis/farmacologia , Células A549 , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Células Jurkat , Células MCF-7 , Estrutura Molecular , Necrose , Neoplasias/metabolismo , Neoplasias/patologia , Resorcinóis/química , Células THP-1 , Células U937 , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...